A Duality Theory for Quantitative Semantics

نویسندگان

  • Reinhold Heckmann
  • Michael Huth
چکیده

A continuous predicate on a domain, or more generally a topological space, can be concretely described as an open or closed set, or less obviously, as the set of all predicates consistent with it. Generalizing this scenario to quantitative predicates, we obtain under certain well-understood hypotheses an isomorphism between continuous functions on points and supremum preserving functions on open sets, both with values in a xed lattice. The functions on open sets provide a topological foundation for possibility theories in Artiicial Intelligence, revealing formal analogies of quantitative predicates with continuous valuations. Three applications of this duality demonstrate its usefulness: we prove a universal property for the space of quantitative predicates, we characterize its inf-irreducible elements, and we show that bicontinuous lattices and Scott-continuous maps form a cartesian closed category.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A duality between LM-fuzzy possibility computations and their logical semantics

Let X be a dcpo and let L be a complete lattice. The family σL(X) of all Scott continuous mappings from X to L is a complete lattice under pointwise order, we call it the L-fuzzy Scott structure on X. Let E be a dcpo. A mapping g : σL(E) −> M is called an LM-fuzzy possibility valuation of E if it preserves arbitrary unions. Denote by πLM(E) the set of all LM-fuzzy possibility valuations of E. T...

متن کامل

A generalization of the Chen-Wu duality into quantale-valued setting

With the unit interval [0,1] as the truth value table, Chen and Wupresented the concept of  possibility computation over dcpos.Indeed, every possibility computation can be considered as a[0,1]-valued Scott open set on a dcpo. The aim of this paper is tostudy Chen-Wu's duality on quantale-valued setting. For clarity,with a commutative unital quantale $L$ as the truth value table, weintroduce a c...

متن کامل

STONE DUALITY FOR R0-ALGEBRAS WITH INTERNAL STATES

$Rsb{0}$-algebras, which were proved to be equivalent to Esteva and Godo's NM-algebras modelled by Fodor's nilpotent minimum t-norm, are the equivalent algebraic semantics of the left-continuous t-norm based fuzzy logic firstly introduced by Guo-jun Wang in the mid 1990s.In this paper, we first establish a Stone duality for the category of MV-skeletons of $Rsb{0}$-algebras and the category of t...

متن کامل

SOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING

Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...

متن کامل

Functorial semantics of topological theories

Following the categorical approach to universal algebra through algebraic theories, proposed by F.~W.~Lawvere in his PhD thesis, this paper aims at introducing a similar setting for general topology. The cornerstone of the new framework is the notion of emph{categorically-algebraic} (emph{catalg}) emph{topological theory}, whose models induce a category of topological structures. We introduce t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 257  شماره 

صفحات  -

تاریخ انتشار 1997